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ABSTRACT

We are concerned with the M/G/ 1 retrial queue with balking. The ergodicity condition
is first investigated making use of classical mean drift criteria. The limiting distribution
of the number of customers in the system is determined with the help of a recursive
approach based on the theory of regenerative processes. Many cloged form expressions
are obtained when we reduce to the M/M/1 queue for some representative balking
policies.
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RESUME

Dans cet article on étudie une file d’attente du type M/G/1 avec rappels et “balking”.
Premierement on recherche la condition d’ergodicité en utilisant les critériums clas-
siques des dérives moyennes. La distribution stationnaire du nombre de clients dans le
systéme est determinée avec 'aide d’une approximation recoursive basée sur la théorie
des processus régeénératifs. En outre, pour un modele du type M/M/ I des expressions
explicites sont obtenues.

1. INTRODUCTION

This paper deals with a single server queue of the type M/G/1 in which customers balk
with a general probability p,, depending on the number of customers in the system upon
arrival. In addition, a secondary input of repeated attempts associated to a group of
primary blocked customers is also assumed.

In many queueing situations a customer on arrival may balk, so there exists a vast
literature devoted to the design and applications of such models (see Grassmann (1974),
Schellhaas (1983), Ikeda and Nishida (1988), Krishna Kumar et al. {1993), Abou-El-ata
and Hariri (1995) and their references). Most queneing systems with balking deal with
the case of classical waiting lines, i.e., the server is always aware of the presence of
customers and immediately turns to a waiting customer when a service ends. However,
there are queueing models in which an arriving customer who finds the server busy
must leave the service area and join a group of unsatisfied customers called ‘orbiv’.
This situation arises in telephone systems, in local area networks and in many daily life
queueing models. The repeated attempts can be modelled according to an individual or
a collective discipline depending on each particular application. A review of the main
results and applications of retrial queues can be found in Yang and Templeton (1987),
Falin {1990) and Falin and Templeton (1997).

Falin {1990) (section 13) described a model with non persistent primary customers
which is in fact a retrial quene with constant balking probabilities. On the other hand,
the case where repeated attempts are non persistent can be thought as a related model
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34 J.RARTALEJO AND M.J. LOPEZ-HERRERO

with impatient customer, 1.e., the balking assurnption implies an automatic system aban-
donment upon arrival at the system whereas impatience means to take the abandonment
decision after some random time.

Recently, Artalejo (1995} and Falin and Artalejo (1995} considered a modified M/
M /¢ retrial queue in which an arriving customer who finds all servers accessible for him
busy, joins either the waiting line with probability p;, depending on the number i of
customers in the queue, or the orbit with probability ¢; = 1 — p;.

In the present paper we extend the analysis of queueing models allowing the simul-
taneous presence of balking and repeated attempts. To that end, we study an M /G /1
queue with balking probabihties depending on the number of customers in the system
upon arrival. It should be noted that the analysis in closed form of retrial queues with
general interarrival times or general interrepetition periods remains still open.

The rest of the paper is organized as follows, The mathematical model is described
in section 2. A potential application related to the congestion control of buffers arising
in packet switching networks is also discussed. In section 3, we investigate the ergodicity
condition. The joint distribution of the server state and the orbit length in steady state
is studied n section 4. In section 5, we concentrate on the model at Markovian level
and consider several particular cases for the balking probabilities p;.

2. MODEL DESCRIPTION

We consider a single server queueing system to which primary customers arrive according
to a Poisson process with mean rate A, Oun finding the server busy and 7 units in
the orbit, an arriving custorner joins the retrial group with probability g.4,, ie., the
balking probability is piyy = 1 — g;41. Access from orbit to the server is governed by
an exponential law with linear intensity a1 — dy;) + jp, when the orbit size is j € IN,
where &, 18 Kronecker’s delta. ‘That linear retrial policy {see Artalejo and Gomez-
Clorral (1997)) allows us to consider simultaneously the classical policy where a =
{Yang and Templeton (1987), Falin (1990) and Falin and Templeton {1997}) and the
constant retrial policy where ¢ == § (Martin and Artalejo (1995) and its references). It iz
usual to employ the classical retrial policy to model subscribers’ behaviour in telephone
systems where the repeated attempts are made individually by each blocked customer
{see Cohen {1957)). Both retrial policies have applications in computer networks where
the retrial description follows a collective policy and the repeated attempts are made
by a computational device {see Yang and Templeton {(1987) and Choi et al. (1992)).

The services times are general with probability distribution function B(t) (B(0) = 0),
first moment 3y, and Laplace-Stieltjes transform 3(8). The input stream of primary
arrivals, service times and intervals between successive repeated attempts are assumed
to be mutually independent.

The system at time t can be described by the process X(t) = (C{t), N(t), £(1)),
where C(t) is 0 or 1 according to whether the server is free or busy, N (1) is the number
of unsatisfied customers in orbit at time . When C(1) = 1, then £(t) represents the
elapsed time of the customer being served. In what follows, we neglect £(t) and consider
only the pair Y{¢) = (C{t}, N(t)) which state space is § = {0, 1} x IN. The state space
and the transitions among states are shown in Figure 1.

From the model description, it 18 clear that the evolution of our retrial queue is
described in terms of an alternating sequence of idle and busy periods for the server. At
any service completion epoch, the server becomes free. Next, the following customer who
accesses to the service facility is determined by a competition between two exponential
laws of rates A and a(l — do;) + ju. 1t should be pointed out that this fact is the main
difference with classical queueing systems without retrials.
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Figure 1: The state space and transitions

The above retrial queue with balking is a generalization of a few well known queueing
systems. As a potential application we next examine the dynamic behaviour of a packet
switching network with repeated attempts and control of the inner congestion.

The existing literature shows that retrial queues are an useful tool for the stochas-
tic modelling of many computer networks. For the description of practical applica-
tions in packet switching networks, computer networks with star topology and local
area networks operating under the so-called Carrier Sense Multiple Access protocol,
the interested reader is referred to Yang and Templeton {1987}, Choi et al. {1992),
Khomichkov{1995), Janssens {1997) and the references therein.

In a general setting, a local area network provide communication paths among the
computers and other devices connected to the nodes of the network. Due to economic
reasons, the networks are designed to make possible the optimization of existing re-
sources by sharing circuits. ‘To that end, the nodes of a computer can be connected
i a variety of ways. In this context, a major motivation for our model comes from a
natural generalization of the packet switching network described by Yang and Temple-
ton (1987). They considered a computer network win which there are a group of host
computers connected to interface message processors. Messages arrive at the host com-
puter following a Poisson stream. If the host computer wishes to transmit the message
to another host computer, it must send the message and the final address to the inter-
face message processor to which it is associated. If the processor is free the message
is accepted; otherwise the message come back to the host computer and is stored in a
buffer to be retransmitted some time later. The buffer in the host computer, the inter-
face processor and the retransmission policy correspond to the orbit, the server and the
retrial discipline, respectively, in the queueing terminology.

We now extend Yang and Templeton’s description by mtroducmg a link among the
interface message processors aud a mechanism to control the system congestion. One of
the commonly used topologies for connecting the nodes of a computer network is the bus
topology. The most important feature of the bus topology is that a transmitting station
{interface processor in our application) sends the message through the bus to the rest of
interface processors which are able to read destination addresses and select for complete
reading those messages for which the interface processor is the appropriate destination.
Information about the inner congestion in each host computer is also spread through
the bus.
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36 JR.ARTALEJO AND M.J. LOPEZ-HERRERO

It should be noted that all interface message processors are sharing the same bus, so a
routing policy is necessary to avoid collisions between two processors trying to transmit
simultaneously their messages. However, in this paper we will restrict ourselves not to
the global analysis of the whole network but only to a particular host computer and the
processor at which it is connected. Finally, we introduce the balking probabilities as a
mechanism to control the level of internal congestion in the buffer. In fact, we consider
two possibilities depending on the available information coming from the bus:

1) Partial information. If the available information is reduced to the state of the buffer in
the host computer and the state of the corresponding interface message processor,
then we choose decreasing probabilities gx. The expected effect iz 1o moderate the
waiting time in the buffer and reduce the number of collisions.

i) Global information. We now assurne that the bus transmits information about the
buffer size of the different host computers. Then the particular station under
study will have capacity to increase the probabilities gr when the global buffer
space in the rest of stations is low.

3. ERGODICITY CONDITION

We now study necessary and sufficient conditions for the system to be stable. To that
end, we shall investigate the ergodicity of the embedded Markov chain at departure
epochs which is the embedded Markov renewal process of the continuous time Markov
process X(t) (see Cinlar (1975)).

Let 1, be the time of the n-th departure. Observe that the sequence Y, == N{n,+)
forms a Markov chain, which is the embedded Markov chamn for our queueing system.
Furthermore, for convenience of presentation we shall use the following notations:

p =M and ¥ = Mg (A + a)at,
where g == limg_.. gx. The existence of this limit is a common assumption in prac-
tical applications (see for instance Haight (1957}, Subba Rao and Jaiswal (1965) and
Grassmann {(1974)).

The ergodicity condition 18 studied in the following theorem:

Theorem 1 Let assume that img. ... qx = q, then:

i) Ifa >0 and p > 0, then {Y,},7 | is ergodic if p < 1. It @s not ergodic if p > 1. If
p =1 and {gx}s., decreases to q then {¥,};_, is not ergodic.

i) If a >0 and p = 0, then {Yn}, , is ergodic if v < 1. It is not ergodic if v > 1. If
v = 1 and {gx}y., decreases to q then {Y, },, is not ergodic.

Proof:
First, observe that {¥,}, ; satisfies the fundamental equation

Yoer = Yo = Buyy o+ Vg, 1)

S

where 1, is the number of customers joining the orbit during the n-th service time and,
B, = t if the n-th customer in service comes from the orbit and B, = 0 otherwise.

Note that {Y,}, , is irreducible and aperiodic. To investigate the ergodicity we
zhall employ Foster’s criterion, which states that an irreducible and aperiodic Markov
chain is ergodic if exists a non negative function f{i),7 € IN, and ¢ > 0 such that the
mean drift

fio= BUf (Yo ) = Y)Y =1 (2)
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is finite for all i € IN, and ; < —¢ for all © € IN except perhaps a finite number. In our
case, we choose the test function f{i) = . Then, we obtain

Yio = E[Vn+1 ~ Bayy | Yo = i
= A+a(l —é&;) +iu) !
X AE V] + (@(l = 8pi) + 1p)(Eiei Va1l = 1)] 1€ N (3)

It should be noted that the subindex in the expected values represents the number of
customers in orbit just at the beginning of the (n + 1)-th service period.

The number of customers joining the retrial group during a service time is governed
by a birth process with rates {Ag;};-,. Alternatively, we can see this non-stationary
Poisson process as a double stochastic Poisson process whose rate varies randomly (see
Cox and Isham (1980)). Thus, taking into account that limg .o gx == g, We get the
following upper bound for any € > O

0; SNg+ OB — (o +ip) N+ a+ip) 1> e, (4)

Now we consider the case @ > 0 and > 0. If p <1 and € € (0,q(p" ! —1)) then
Himi oo i < A(@+€)31 —1 < 0. Therefore, the chain {Y,},.., is ergodic. The argument
for the case a > 0 and g = 0 is similar. In this second case, we must choose ¢ €
(0.q(v ' = 1)).

To study non-ergodicity we follow the Theorem 1 in Sennott et al. (1983) which
states that we can guarantee non ergodicity if {¥,})7, satisfies Kaplan’s condition,
w; < oo, for all j € IN, and there is an index jo such that p; > 0, for j > jo. Now we
have the lower bound

0 > Mg - €)1 — (a+ip)(A+a+ip) ", i >ile). (5)

If we consider the case a > 0 and g = 0, and choose ¢ € (0,¢(1 —~+71)] then we have
@i > 0, for 7 > i(€). When g > 0, choosing ¢ € (0,g(1 — p~!)) we have lim; .o @; >
Mg — )3 — 1 > 0. Furthermore, Kaplan’s condition is fulfilled because there is an
index k such that p;; =0, for j <i—k, i >0, where P = (p;;) is the transition matrix
associated to {Yn}oo;-

Finally, we consider the cases p == 1 and v = 1. Now the system is ergodic or not
ergodic depending on the way in which {gc},. , converges to q. We will discuss this
situation in more detail in section 5. If we assume that {gx} | ¢ we can easily observe
that for @ > 0) and p = 0 we get

02 M8 —alA+a) !t =a(d+ o) My =1 =0, ix>1, (6)

and when g > 0 we find that
o2 p—(a+ip) A+ a+ip)y ™ >p—-1=0, i>1 (7)
This completes the proof. e
4. JOINT DISTRIBUTION OF THE SERVER STATE
AND THE NUMBER OF CUSTOMERS IN ORBIT

For the process Y(t) we define the probabilities P;;(t) = P{C(t) = {, N(t) = j} for
t >0, (i,7) € S. Our main objective in this section is to develop a recursive scheme for
computing the limmiting probabilities

Py = tlng P{Ot) = i, N(t) = j}, for (¢,j) € S. (8)
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In previous works {(Kok (1984) and Artalejo (1994)), numerically tractable algorithms
for computing the limiting distribution in single server queues with repeated attempts
were developed. The derivation employs a recursive approach based on the theory of
regenerative processes. Schellhaas (1986) and Tijms (1994) showed the usefulness of
this method in a general class of queueing systems,

We next extend the methodology to get explicit expressions for {1".14,-}(1 Hes when
the input stream depends on the number of customers in the orbit.

Let a regeneration cycle be the time between two successive visits of the process
Y(t) to the state (0,0). Then, the process Y{¢t) is a regenerative process with embedded
renewal process {13}, ,, where T; denotes the i-th regeneration cycle. We also introduce
some random variables:

T — the length of a cycle,

T;; = the amount of time in a cycle during which Yt} = (i, 7). (i,j} € S.

N, = the number of service completions in a cycle at which j customers are left behind
in orbit, j > 0.

First, from the theory of regenerative processes, we have

ET,

S e B feay o
i T T (4,j) €S, (9)

We now observe that the number of transitions from state (0, j) iz equal to the number
of transitions into (0, ) in a regeneration cycle (0,7]. Equating the corresponding
expectations, we have

(A all = d;) v ) E Tl = E Ny, j20. (10)

Furthermore, the number of transitions at which the orbit size imcreases from j to j + 1
equals the number of transitions at which the orbit size decreases from j +1 to j. Taking
expectations, we obtain that

(0= (o LB Toynl = A BTyl G20 (1)
Dividing (11) by /T we have from {9) that
(o (5 Uil g0 = Aggelhy, J 20 (12)

To obtain other relationships among the probabilities {17}, we define:

1,706 8

Ai; = The expected amount of time that during a service time j enstomers are in orbit
given that the previous service time left & customers in orbit.

Now a straightforward application of Wald’s theorem yields

il
STy Y EING Ay, 20 {13)
k=0

From (9}, (10) and {13) we get

(L= Mgy (1= Moo+ (s V) A0 ;)0

7 lj

Ao, Pog + (1 = (5(;\,.;2,\(1;(»:1 Moot k) NAL P, j2 00 (1)
£ 1
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The above formula provides a stable scheme for computing the probabilities {F; j}jcj,(]
in terms of Fyy. The probabilities { £ J}Jxo can be obtained from (12). Finally, we can
find Fyg by using the normalization condition

o

o
Poo =1=3 Py =Y Py (15)
F=1 F=0

It remains to specify the calculation of the quantities Ag;. This will be done with the
help of the following auxiliary quantity:

Bi; = the expected amount of time that during a service time j customers are in orbit
given that at the beginning of the service k customers were in orbit.

By connecting Ay; and By; we obtain

Ay = (e GrUmAtas(rOu ' By j>0, (16)
‘4‘99 = (A+all - Or)k) -+ k/l,) R l((l(l - 50k> + kp)]jk, 1,7 F /\Bkj" 0<k<L ](17)

We now observe that an infinitesimal interval (t,t + At) contributes to By, if: i) the
service time has not been completed before time ¢, and 1i) at time ¢ there are j customers

in orbit given that at time ¢ == 0 the orbit size was k.
Then, we have

z%n/“mwm—BWNLOSksz (18)
4]

where Ky;(t) is the probability that, starting from the state k, the birth process with
rates {Ag;} is at the state j after time ¢.
The forward equatious for Ky, (t) are given by:

}ij(o;‘ i dk(ja

Keelt) = =X Kiilt), (19)
K () = =X K1)+ Aoy Kiya (1), G2k +1,
where Ax = A1, for £ > 0. Tt is known that the solution of (19) is given by
Kes(t) =3 Coj Ane ™, j2k, (20)
n=k
where ‘
J
an i (}\j)ml H AL(AL - A“)”I, k S n S ] (‘..1)

ik, ifn

It should be noted that (20) is valid when all the birth parameters {\g;} are distinct
{see Kulkarni (1995)); it is also assumed that the improper product ka i%n 18 equal
to one. The solution for a general sequence {Ag;} can be obtained following the lines
described in Appendix I, Kleinrock {1975).

With the help of (20) and (21) we reexpress (18) as follows

J
Big = Y Coy (1= B(A)). 0< k< (22)
nwk

Finally, we observe that the computation of Fyp implies the truncation of the infinite
series in formula (15). Thus, we must extend our arguments to a model with a finite
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orbit capacity, say K. This finite retrial queue iz a minor variant of the main model
investigated earlier. It can be easily proved that By, are now given by

Bi, = Y Coy (1=3800)), 0<k<j<K-1,
rk
K1
Bux = Mt 3 Cocor (= () (1 =30, 0<k<K-—1, (23)
nwk
Bkx = b,

where C,,; were given in {21).

5. THE MODEL AT MARKOVIAN LEVEL

Through this section we take B(t) == 1 —¢ "'t >0, and assume that the ergodicity
condition is fulfilled. It is easily verified that the limiting probabilities are subject to
the equations

(A+all =6u;) +ju) Foy = v Py, j20, (24)
(o + (j+ 1)p) f’o.,m = A Py, §20. (2

Then from (24) and (25) it follows that

where

() = 1. if n=0,
WEn = zlx+=1 - (r+n-1), f n>1,

is the Pochammer symbol.
Now Fyg is obtained by using the normalization condition (15}, so we have

a A Y’Ll AN S (L}z_{)] ,\VX“ AN (LL&“:"])]

k=1 T + ] . 7=0 ko= 1 (% -+ l)}
{28)
[n the particular case p == 0 and o > 0 the above expressions can be simplified as follows
. AMA (l) . \
ST —— | I > 1, (29)
0 N H Gk ( ) w0, J 2 )
P AA - o)) ) .
ST § K (—~———)> oo 320, (30)
; vt vo

el o MA v a) i (A(z\ + o} ‘) (31)
fog = Ada  vidta) Z H% Y

G \ /
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RETRIAL QUEUE WITH BALKING 11

Our second goal 13 to find the partial factorial moments of the limiting distribution
{P;;}. The partial factorial moments M}, for 1 € {0, 1} and k € IN, are denoted as
follows

My =Y Py, Mp=D_gi=1) =k 1) Py k21 i€{01}  (32)
7=0 jok

First, we consider the case p > 0. Utilizing that (1); ~ jl and (a)n e = (a)ela + k)n,
we get after some manipulations that:

. Mo 1
. A ANF : k!
ey e,

Ada \v

~) = . k>, (33
- 12 n 2 o 2
n=l} il (u ' )n
‘M .1
) ,/\ k41 ] ) k!
Mg (——) -—-—————-———-———( s >k Ton
v, (- 1)
H k
Y)—\ AN 1 n-tk (A“a 4 ko 1) (k4 1),,1 - Ny
5 (;> 1w T S k>0, (34)
n {5 ol " - "
i\[({:,' e ] — \Iﬁl (35)

Now the case p = 0 and a > 0 reduces to the following expressions:

A by AN+ o) et U (AN~ a))" 34 ;
M) = ( (S e - : i B >1(36
k Yral\ va > no Z;} oy ( — ) H q > 1(36)
ML = V\ +a) MY, k>, (37)
PO [ AMA+a) e
My = - [ o EJ} \\ — ) II G- (3%)

An easy application of the ratio test shows that M} exists for every k € IN and i € {0, 1}.
Hereafter it iz assumed that the probabilities gx obey any of the following models:

Model 1. Gk = ],7"'1’ k> 1

The study of this model is motivated by the packet switching network operating under
partial information described in section 2. Suppose that an arriving customer finds the
server busy and k customers in orbit. I the orbit size increases then the waiting time
is higher and the risk of a collision also increases. This fact have a discouraging effect
and the customer is authorized to join the orbit with probability (& + 1)1, ie, the
probability g is the inverse of the total number of customers in the system. In a more
general setting we can assume that {g¢}; , is a decreasing sequence or. indeed, that
there exists an integer M, which iz the greatest orbit size that the system will tolerate.

In this case the limiting probabilities and the factorial moments can be reexpressed
in terms of hypergeometric functions.

Model 2. qr = kik ~ p) ' k>1, pe{l,2, -}
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42 JROARTALEJO AND M) LOPEZ-HERRERO

The motivation for studying this model i double. TFrom a theoretical point of view
the analysis of model 2 allows us to complete the analvsis of the ergodicity conditions
given in section 3. The case in which the bus operates under the global information
framework discussed in section 2 provides a potential application.
First, we study the model 1. Let us consider the generalized hypergeometric series
:“ (01)71 (U'z)n e (’Qr}u 2"

Folay, by, -, b, 2) = - — —t— {39
phogiitls Fa t s Vg <) Tf_‘n {1'1)72(,'{’2)n"":1)q}7l nf‘ . )

and the degenerate hypemyeomelric series given by

o,
: 2N

. . {a), : )
Glajh z) =y 2L {40
WS LT “0)
=g T '

Observe that [1] ; g« = (1) . Now the performance characteristics developed earlier
can be rewritten in a more convenient form. These particular results can be summarized
in the following theorem:

Theorem 2

i) Ifa>0.p>0and g = k1 k> 1, then:

A (ﬁ)f’ (Q“)
(1

Pu; — it Py, 21, (41)
U" Ao\ v ), ('_’_ i 1) = N
()i 5 ;
A VAR (;\‘f;‘ﬂ -+ 1) )
Py = (") — L, § 20, (42)
vl (2 )
pto o2 @(A ey 1;i\-> ; icb(’\ RS P '1;i>. (43)
. Avra Ao [T v I8 Iz Iz v
A AF At P : A
MY = (—) -(—f—)—k—- ho @ ( A PRy N T —) , k>1, (44)
’ At \ v (r) " 1) i I v
k
, k41 .x_.i__l e
' M : )\ (X g /\ R
My = (:\‘> -(-—-’—————)k— Poo & < S bk 1; Lk 1 —-) . k> 0(45)
v 1% (g . 1) I 1 2
o !k
i) Ifa >0, pu=0and qp = k™' k> 1, then:
N AT A+ a)y . .
oy = At F ( ra ) Fho. Jjz b (46)
4 AL A oY L .
p; = 2= &._L._._ﬂ) s § >0, (47)
v ! oy
ot Q CAMA=VEA) ey va (18
r . ;- , : ) {2 %e)
H (Xt a) A+ a) ¢ ' )
- : W\ K ) y
\[: A (/\(z\ ¢ (1,!) (),\‘\/\—}z:r)/ud }')(](i . i > 1. (1(”
' At Ly
ML = T e ve (50)
ME = Drapw TML k>1 (51)
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Now we turn our attention to model 2, First, we observe that {gx}, , increases to 1.
Thus, the ergodicity for the cases i) p > O and p= 1, and i) a >0, gy =~ 0and v = 1
is not covered by Theorern 1. However, the continuous Markov chain (C(#), N{t)) is
non-explosive so it 15 ergodic if and only if one can find a probability solution to the
system (24) —{25). Taking into account that [Ty | qx = j/(p+ 1), we reduce after some
algebra the general expressions (26) — (31} and (33) — (35) to the following theorem:.

Theorem 3

) Ifa>0 pu>0and g = kik=p) . k>0, pe {1,2, -}, then

i)

vy a(32))
f)@] — ____.._A — (.;./.> - 1 7 . [)O(); } > 1’ {52>
v ), (u P )J}
A FER ‘I}; (%» i)
[")1j . (-..) : - d 1')(}!% ‘]. 2 0, (‘-—)3)
v e, (240)
¥ f\ )\ PN o )\
]"‘\"»)1 o - rifﬂré\ . ‘L }’ 7+ 1’ o 1‘ .
oo Ao PR ( u P " i l/)
A A \
_:v.~-3I<‘.2< ¥ + 1,1 Lp- ].ﬁ..?, 1;__). (54)
¥ H 14 v
Vo A (,\\“ {u;\?(&ﬁa)k %0
My Ata\v) 1, (% . >
¥ p k
. r\ - C )\ ‘
3["2( ua thk Lk Tp ek 1% ko 1:77>, k21, (55)
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Figure 2: The effect of & and A on I/[77.
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Finally, an application of ratio and Rabee’s tests allows us to complete the discussion
of the ergodicity condition. In this sense, we have

a) Ifa >0, p>0and p:= 1, then the system is ergodic if and only if A < pu(p—1).
In addition, My exists if and only if k < p— Ay, and M} exists if and only if
E<p—1-Xu

M? and M| exist if and only if k<p-2.

The main conclusion is that model 2 with increasing probabilities ¢; provides a situation
in which the ergodicity and the existence of the moment of order & {for the cases p = 1
and v = 1) depend on constraintz involving the system parameters A, g and p.

It should be noted that the main results of this section are given in terms of general-
ized and degenerate hypergeometric sertes. Thus numerical evaluation can be done with
the help of well-known mathematical libraries such us MATHEMATICA and MAPLE.

We now illustrate the effect of the parameters on the main performance character-
istics of model 2. Numerical solutions we obtained by using version 2.0a of Maple V.

In a first set of experiments we consider the constant retrial case @ > 0 and g = 0.
In figure 2 the expectation £ {711 is plotted versus the arrival and retrial rates. We have
presented a surface which corresponds to p = 6 for the exireme case v == 1.

In figures 3 and 4 we hold the same parameters p and . Then, we show the effect
of the parameters o and A on the partial coefficients of variation defined as C*
(M3 + Mi(1 = MiNY2/ME for @ = 0,1

Table 1 illustrates the behaviour of the partial factorial moments M as functions
of p and the ratio a/A The system parameters are chosen to get v = 1. The data
correspond to the cases p == 4,6.8,10,12 and /A = 0.001,0.01,0.1, 1, 10. The analysis
of M} is similar due to the relationship (61). |

A second set of numerical examples concerns with the linear retrial case o > () and
i > 0. We will continue assuming the extreme case, so p = 1.

The expected value I {T] shown in figure 5 as a function of A has two vertical
asymptotes at the points A = 0 and A = 4. The second one is explained by the ergodicity
condition A < p(p — 1), We have presented the case p = 5, p == 1 and three curves
which in decreasing order correspond to a = (0.5, 1. 2. We have plotted the curves in the
domain A € (0.75.4).
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Figure 4: The effect of & and A on (

Figure 5: The effect of Aon £177.
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Table 1. The effect of the system parameters on the factorial moments MY for a
constant retrial queue with probabilities gy
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Table 2. The effect of the system parameters on the factorial moments

retrial queue with probabilities g = k(k + p) 1
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Figure 6: The effect of A on (V.
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Figure 7: The effect of @ on (.

The effect of the arrival rate and the retrial parameter a on the coeflicient of variation
" is shown in figures 6 and 7, respectively. To this end. we have chosen p = 10 and
i == 1. Then, in figure 6 we have presented three curves which correspond to a =+ 1,2,5
and in figure 7 we consider the cases A = 1,2,5.

Finally, table 2 illustrates the effect of the system parameters on the partial factorial
moments M. Remember that MY, k > 1, exists if and only if A < p(p ~ k). We have
consider the case in which a/p = 1 and p = 4,6, 8,10
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